Mathematics

General Instructions

• Reading time – 5 minutes
• Working time – 3 hours
• Write using black pen
• Calculators approved by NESA may be used
• A reference sheet is provided at the back of this paper
• In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I – 10 marks (pages 2–5)
• Attempt Questions 1–10
• Allow about 15 minutes for this section

Section II – 90 marks (pages 6–16)
• Attempt Questions 11–16
• Allow about 2 hours and 45 minutes for this section
Section I

10 marks
Attempt Questions 1–10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

1 What is the value of \(p^{10} \) to two significant figures?
 A. \(9.36 \times 10^4 \)
 B. \(9.4 \times 10^4 \)
 C. \(9.36 \times 10^5 \)
 D. \(9.4 \times 10^5 \)

2 What values of \(x \) satisfy \(4 - 3x \leq 12 \)?
 A. \(x \leq -\frac{16}{3} \)
 B. \(x \geq -\frac{16}{3} \)
 C. \(x \leq -\frac{8}{3} \)
 D. \(x \geq -\frac{8}{3} \)

3 What is the value of \(p \) so that \(\frac{a^2 a^{-3}}{\sqrt{a}} = a^p \)?
 A. \(-3 \)
 B. \(-\frac{3}{2} \)
 C. \(-\frac{1}{2} \)
 D. 12
4 A parabola has vertex (2, 1) and focus (5, 1).

What is the equation of this parabola?

A. \((x - 1)^2 = 12(y - 2)\)
B. \((x - 2)^2 = 12(y - 1)\)
C. \((y - 1)^2 = 12(x - 2)\)
D. \((y - 2)^2 = 12(x - 1)\)

5 Which of the following is equal to \(\frac{\log_2 9}{\log_2 3}\)?

A. 2
B. 3
C. \(\log_3 3\)
D. \(\log_2 6\)

6 A game is played by tossing an ordinary 6-sided die and an ordinary coin at the same time. The game is won if the uppermost face of the die shows an even number or the uppermost face of the coin shows a tail (or both).

What is the probability of winning this game?

A. \(\frac{1}{4}\)
B. \(\frac{1}{2}\)
C. \(\frac{3}{4}\)
D. 1
The diagram shows part of the graph of \(y = a \sin(bx) + 4 \).

What are the values of \(a \) and \(b \)?

A. \(a = 3 \quad b = \frac{1}{2} \)
B. \(a = 3 \quad b = 2 \)
C. \(a = 1.5 \quad b = \frac{1}{2} \)
D. \(a = 1.5 \quad b = 2 \)
A particle is moving along a straight line. The graph shows the acceleration of the particle.

For what value of t is the velocity v a maximum?

A. 1
B. 2
C. 3
D. 5

Which expression is equal to $\int \tan^2 x \, dx$?

A. $\tan x - x + C$
B. $\tan x - 1 + C$
C. $\frac{\tan^3 x^2}{6} + C$
D. $\frac{\tan^3 x}{3} + C$

A particle is moving along a straight line with displacement x at time t.

The particle is stationary when $t = 11$ and when $t = 13$.

Which of the following MUST be true in this case?

A. The particle changes direction at some time between $t = 11$ and $t = 13$.
B. The displacement function of the particle has a stationary point at some time between $t = 11$ and $t = 13$.
C. The acceleration of the particle is 0 at some time between $t = 11$ and $t = 13$.
D. The acceleration function of the particle has a stationary point at some time between $t = 11$ and $t = 13$.
Section II

90 marks
Attempt Questions 11–16
Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.

(a) Using the sine rule, find the value of \(x \) correct to one decimal place.

(b) Differentiate \(x^2 \sin x \).

(c) Differentiate \(\frac{2x + 1}{x + 5} \).

(d) What is the limiting sum of the following geometric series?

\[
2000 - 1200 + 720 - 432 \ldots
\]

(e) Evaluate \(\int_0^1 \frac{1}{(3x + 2)^2} \, dx \).

Question 11 continues on page 7
(f) A bag contains 5 green beads and 7 purple beads. Two beads are selected at random, without replacement.

What is the probability that the two beads are the same colour?

(g) The parabola $y = x^2$ meets the line $y = x + 2$ at the points $(-1, 1)$ and $(2, 4)$. Do NOT prove this.

By first sketching the graphs of $y = x^2$ and $y = x + 2$, shade the region which simultaneously satisfies the two inequalities $y \geq x^2$ and $y \geq x + 2$.

End of Question 11

Please turn over
Question 12 (15 marks) Use the Question 12 Writing Booklet.

(a) The line \(\ell \), with equation \(x - 2y + 4 = 0 \), passes through the point \(A(8, 6) \) and intersects the x-axis at the point \(B \).

The line through \(A \) perpendicular to \(\ell \) intersects the x-axis at the point \(C \).

\[
\begin{align*}
\ell & \quad \text{(passing through } A(8, 6) \text{)} \\
O & \quad \text{(origin)} \\
B & \quad \text{(intersection with x-axis)} \\
C & \quad \text{(new intersection with x-axis)} \\
\end{align*}
\]

(i) Find the equation of the line \(AC \).
(ii) Find the area of triangle \(ABC \).

(b) In an arithmetic series, the fourth term is 6 and the sum of the first 16 terms is 120.

Find the common difference.

(c) The number of leaves, \(L(t) \), on a tree \(t \) days after the start of autumn can be modelled by

\[
L(t) = 200000e^{-0.14t}.
\]

(i) What is the number of leaves on the tree when \(t = 31 \)?
(ii) What is the rate of change of the number of leaves on the tree when \(t = 31 \)?
(iii) For what value of \(t \) are there 100 leaves on the tree?

Question 12 continues on page 9
Question 12 (continued)

(d) The diagram shows the graph of \(y = \frac{3x}{x^2 + 1} \).

The region enclosed by the graph, the \(x \)-axis and the line \(x = 3 \) is shaded.

Calculate the exact value of the area of the shaded region.

End of Question 12
Question 13 (15 marks) Use the Question 13 Writing Booklet.

(a) Solve \(2 \sin x \cos x = \sin x\) for \(0 \leq x \leq 2\pi\).

(b) The diagram shows a circle with centre \(O\) and radius 20 cm.

The points \(A\) and \(B\) lie on the circle such that \(\angle AOB = 70^\circ\).

Find the perimeter of the shaded segment, giving your answer correct to one decimal place.

(c) (i) Differentiate \((\ln x)^2\).

(ii) Hence, or otherwise, find

\[
\int \frac{\ln x}{x} \, dx.
\]
Question 13 (continued)

(d) The diagram shows the region bounded by the curve $y = x - x^3$, and the x-axis between $x = 0$ and $x = 1$. The region is rotated about the x-axis to form a solid.

Find the exact value of the volume of the solid formed.

(e) (i) Sketch the graph of $y = |x - 1|$ for $-4 \leq x \leq 4$.

(ii) Using the sketch from part (i), or otherwise, solve $|x - 1| = 2x + 4$.

End of Question 13
Question 14 (15 marks) Use the Question 14 Writing Booklet.

(a) A particle is moving along a straight line. The particle is initially at rest. The acceleration of the particle at time \(t \) seconds is given by \(a = e^{2t} - 4 \), where \(t \geq 0 \).

Find an expression, in terms of \(t \), for the velocity of the particle.

(b) The derivative of a function \(y = f(x) \) is given by \(f'(x) = 3x^2 + 2x - 1 \).

(i) Find the \(x \)-values of the two stationary points of \(y = f(x) \), and determine the nature of the stationary points.

(ii) The curve passes through the point \((0, 4)\).

Find an expression for \(f(x) \).

(iii) Hence sketch the curve, clearly indicating the stationary points.

(iv) For what values of \(x \) is the curve concave down?

(c) The regular hexagon \(ABCDEF \) has sides of length 1. The diagonal \(AE \) and the side \(CD \) are produced to meet at the point \(X \).

Copy or trace the diagram into your writing booklet.

Find the exact length of the line segment \(EX \), justifying your answer.

(d) The equation of the tangent to the curve \(y = x^3 + ax^2 + bx + 4 \) at the point where \(x = 2 \) is \(y = x - 4 \).

Find the values of \(a \) and \(b \).
Question 15 (15 marks) Use the Question 15 Writing Booklet.

(a) Solve $e^{2\ln x} = x + 6$.

(b) The triangle ABC is a right-angled triangle with the right angle at C. The point D is chosen on AB so that CD is perpendicular to AB.

The length of AD is p, the length of BD is q and the length of CD is h.

Show that $h = \sqrt{pq}$.

Question 15 continues on page 14
Question 15 (continued)

(c) The entry points, \(R \) and \(Q \), to a national park can be reached via two straight access roads. The access roads meet the national park boundaries at right angles. The corner, \(P \), of the national park is 8 km from \(R \) and 1 km from \(Q \). The boundaries of the national park form a right angle at \(P \).

A new straight road is to be built joining these roads and passing through \(P \).

Points \(A \) and \(B \) on the access roads are to be chosen to minimise the distance, \(D \) km, from \(A \) to \(B \) along the new road.

Let the distance \(QA \) be \(x \) km.

\[
\text{NOT TO SCALE}
\]

\begin{figure}
\centering
\includegraphics{question15_c.png}
\end{figure}

(i) Show that \(D^2 = (x + 8)^2 + \left(\frac{8}{x} + 1 \right)^2 \). \hspace{1cm} 3

(ii) Show that \(x = 2 \) gives the minimum value of \(D^2 \). \hspace{1cm} 3

(d) The probability that a person chosen at random has red hair is 0.02.

(i) Two people are chosen at random. \hspace{1cm} 2

What is the probability that at least ONE has red hair?

(ii) What is the smallest number of people that can be chosen at random so that the probability that at least ONE has red hair is greater than 0.4? \hspace{1cm} 2

End of Question 15
Question 16 (15 marks) Use the Question 16 Writing Booklet.

(a) A person wins $1 000 000 in a competition and decides to invest this money in an account that earns interest at 6% per annum compounded quarterly. The person decides to withdraw $80 000 from this account at the end of every fourth quarter. Let A_n be the amount remaining in the account after the nth withdrawal.

(i) Show that the amount remaining in the account after the withdrawal at the end of the eighth quarter is

$$A_2 = 1 000 000 \times 1.015^8 - 80 000 \left(1 + 1.015^4\right).$$

(ii) For how many years can the full amount of $80 000 be withdrawn?

(b) A particle moves in a straight line, starting at the origin. Its velocity, v m s$^{-1}$, is given by $v = e^{\cos t} - 1$, where t is in seconds.

The diagram shows the graph of the velocity against time.

![Diagram of velocity against time](image)

Using one application of Simpson’s rule, estimate the position of the particle when it first comes to rest. Give your answer correct to two decimal places.
Question 16 (continued)

(c) The diagram shows the region \(R \), bounded by the curve \(y = x^r \), where \(r \geq 1 \), the \(x \)-axis and the tangent to the curve at the point \((1, 1)\).

\[y = x^r \]

\(O \) (1, 1)

\(x \)

\(y \)

(i) Show that the tangent to the curve at \((1, 1)\) meets the \(x \)-axis at \(\left(\frac{r-1}{r}, 0 \right) \).

(ii) Using the result of part (i), or otherwise, show that the area of the region \(R \) is \(\frac{r-1}{2r(r+1)} \).

(iii) Find the exact value of \(r \) for which the area of \(R \) is a maximum.

End of paper
Mathematics

Factorisation
\[a^2 - b^2 = (a + b)(a - b) \]
\[a^3 + b^3 = (a + b)(a^2 - ab + b^2) \]
\[a^3 - b^3 = (a - b)(a^2 + ab + b^2) \]

Angle sum of a polygon
\[S = (n - 2) \times 180^\circ \]

Equation of a circle
\[(x - h)^2 + (y - k)^2 = r^2 \]

Trigonometric ratios and identities
\[
\begin{align*}
\sin \theta &= \frac{\text{opposite side}}{\text{hypotenuse}} \\
\cos \theta &= \frac{\text{adjacent side}}{\text{hypotenuse}} \\
\tan \theta &= \frac{\text{opposite side}}{\text{adjacent side}} \\
\cosec \theta &= \frac{1}{\sin \theta} \\
\sec \theta &= \frac{1}{\cos \theta} \\
\tan \theta &= \frac{\sin \theta}{\cos \theta} \\
\cot \theta &= \frac{\cos \theta}{\sin \theta} \\
\sin^2 \theta + \cos^2 \theta &= 1
\end{align*}
\]

Exact ratios
\[
\begin{align*}
\sqrt{2} & \quad 45^\circ & 1 \\
45^\circ & \quad 1 \\
2 & \quad 30^\circ & \sqrt{3} \\
60^\circ & \quad 1
\end{align*}
\]

Sine rule
\[\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \]

Cosine rule
\[c^2 = a^2 + b^2 - 2ab \cos C \]

Area of a triangle
\[\text{Area} = \frac{1}{2} ab \sin C \]

Distance between two points
\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \]

Perpendicular distance of a point from a line
\[d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}} \]

Slope (gradient) of a line
\[m = \frac{y_2 - y_1}{x_2 - x_1} \]

Point–gradient form of the equation of a line
\[y - y_1 = m(x - x_1) \]

nth term of an arithmetic series
\[T_n = a + (n - 1)d \]

Sum to n terms of an arithmetic series
\[S_n = \frac{n}{2} \left[2a + (n - 1)d \right] \quad \text{or} \quad S_n = \frac{n}{2} (a + l) \]

nth term of a geometric series
\[T_n = ar^{n-1} \]

Sum to n terms of a geometric series
\[S_n = \frac{a(r^n - 1)}{r - 1} \quad \text{or} \quad S_n = \frac{a(1 - r^n)}{1 - r} \]

Limiting sum of a geometric series
\[S = \frac{a}{1 - r} \]

Compound interest
\[A_n = P \left(1 + \frac{r}{100}\right)^n \]
Mathematics (continued)

Differentiation from first principles
\[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

Derivatives

If \(y = x^n \), then \(\frac{dy}{dx} = nx^{n-1} \)

If \(y = uv \), then \(\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \)

If \(y = \frac{u}{v} \), then \(\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \)

If \(y = F(u) \), then \(\frac{dy}{dx} = F'(u) \frac{du}{dx} \)

If \(y = e^{f(x)} \), then \(\frac{dy}{dx} = f'(x)e^{f(x)} \)

If \(y = \log_e f(x) = \ln f(x) \), then \(\frac{dy}{dx} = \frac{f'(x)}{f(x)} \)

If \(y = \sin f(x) \), then \(\frac{dy}{dx} = f'(x) \cos f(x) \)

If \(y = \cos f(x) \), then \(\frac{dy}{dx} = -f'(x) \sin f(x) \)

If \(y = \tan f(x) \), then \(\frac{dy}{dx} = f'(x) \sec^2 f(x) \)

Integrals

\[\int (ax + b)^n \, dx = \frac{(ax + b)^{n+1}}{a(n+1)} + C \]

\[\int e^{ax+b} \, dx = \frac{1}{a} e^{ax+b} + C \]

\[\int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C \]

\[\int \sin(ax + b) \, dx = -\frac{1}{a} \cos(ax + b) + C \]

\[\int \cos(ax + b) \, dx = \frac{1}{a} \sin(ax + b) + C \]

\[\int \sec^2(ax + b) \, dx = \frac{1}{a} \tan(ax + b) + C \]

Trapezoidal rule (one application)
\[\int_a^b f(x) \, dx \approx \frac{b-a}{2} \left[f(a) + f(b) \right] \]

Simpson’s rule (one application)
\[\int_a^b f(x) \, dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \]

Logarithms – change of base
\(\log_a x = \frac{\log_b x}{\log_b a} \)

Angle measure
\(180^\circ = \pi \) radians

Length of an arc
\(l = r\theta \)

Area of a sector
Area = \(\frac{1}{2} r^2 \theta \)
Angle sum identities
\[\sin(\theta + \phi) = \sin \theta \cos \phi + \cos \theta \sin \phi \]
\[\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi \]
\[\tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} \]

\[t \text{ formulae} \]
If \(t = \tan \frac{\theta}{2} \), then
\[\sin \theta = \frac{2t}{1 + t^2} \]
\[\cos \theta = \frac{1 - t^2}{1 + t^2} \]
\[\tan \theta = \frac{2t}{1 - t^2} \]

General solution of trigonometric equations
\[\sin \theta = a, \quad \theta = n\pi + (-1)^n \sin^{-1} a \]
\[\cos \theta = a, \quad \theta = 2n\pi \pm \cos^{-1} a \]
\[\tan \theta = a, \quad \theta = n\pi + \tan^{-1} a \]

Division of an interval in a given ratio
\[\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \]

Parametric representation of a parabola
For \(x^2 = 4ay \),
\[x = 2at, \quad y = at^2 \]
At \((2at, at^2)\),
tangent: \(y = tx - at^2 \)
normal: \(x + ty = at^3 + 2at \)
At \((x_1, y_1)\),
tangent: \(xx_1 = 2a(y + y_1) \)
normal: \(y - y_1 = -\frac{2a}{x_1}(x - x_1) \)
Chord of contact from \((x_0, y_0)\): \(xx_0 = 2a(y + y_0) \)

Acceleration
\[\frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} \frac{dx}{dt} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) \]

Simple harmonic motion
\[x = b + a \cos(nt + \alpha) \]
\[\ddot{x} = -n^2(x - b) \]

Further integrals
\[\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a} + C \]
\[\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C \]

Sum and product of roots of a cubic equation
\[\alpha + \beta + \gamma = -\frac{b}{a} \]
\[\alpha \beta + \alpha \gamma + \beta \gamma = \frac{c}{a} \]
\[\alpha \beta \gamma = -\frac{d}{a} \]

Estimation of roots of a polynomial equation
Newton’s method
\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]

Binomial theorem
\[(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \]